Gravimetry in 2D - Part IIΒΆ

Simple gravimetric field solution with Integration after [WB87].

import numpy as np
import pygimli as pg
from pygimli.meshtools import createCircle
from pygimli.physics.gravimetry import solveGravimetry
from pygimli.physics.gravimetry import gradUCylinderHoriz, gradGZCylinderHoriz
from pygimli.physics.gravimetry import gradUHalfPlateHoriz
from pygimli.physics.gravimetry import gradGZHalfPlateHoriz

radius = 2.
depth = 5.
rho = 1000.0

x = np.arange(-20, 30, 1)
pnts = np.zeros((len(x), 2))
pnts[:, 0] = x
pos = [0, -depth]

def plot(x, a1, ga, gza, a2, g, gz):
    a1.plot(x, ga[:, 0],  label=r'Analytical $\frac{\partial u}{\partial x}$')
    a1.plot(x, ga[:, 1],  label=r'Analytical $\frac{\partial u}{\partial z}$')

    a1.plot(x, g[:, 0], label=r'Won & Bevis: $\frac{\partial u}{\partial x}$',
            marker='o', linewidth=0)
    a1.plot(x, g[:, 2], label=r'Won & Bevis: $\frac{\partial u}{\partial z}$',
            marker='o', linewidth=0)

    a2.plot(x, gza[:, 0],
            label=r'Analytical $\frac{\partial^2 u}{\partial z,x}$')
    a2.plot(x, gza[:, 1],
            label=r'Analytical $\frac{\partial^2 u}{\partial z,z}$')

    a2.plot(x, gz[:, 0], marker='o', linestyle='',
            label=r'Won & Bevis: $\frac{\partial^2 u}{\partial z,x}$')
    a2.plot(x, gz[:, 2], marker='o', linestyle='',
            label=r'Won & Bevis: $\frac{\partial^2 u}{\partial z,z}$')
    a1.set_xlabel('$x$-coordinate [m]')
    a1.set_ylabel(r'$\frac{\partial u}{\partial (x,z)}$ [mGal]')

    a2.set_xlabel('$x$-coordinate [m]')

fig = pg.plt.figure(figsize=(8,8))
ax = [fig.add_subplot(2, 2, i) for i in range(1, 5)]

# Horizontal cylinder

ga = gradUCylinderHoriz(pnts, radius, rho, pos=pos)
gza = gradGZCylinderHoriz(pnts, radius, rho, pos=pos)

circ = createCircle([0, -depth], radius=radius, marker=2, area=0.1,
g, gz = solveGravimetry(circ, rho, pnts, complete=True)

plot(x, ax[0], ga, gza, ax[1], g, gz)

# Half plate

thickness = 0.1

# mesh = pg.createGrid(x=[-2,2], y=[-2,2], z=[-3,-7])
mesh = pg.createGrid(x=np.linspace(0, 5000, 2),
                     y=[-depth-thickness/2.0, -depth+thickness/2.0])

ga = gradUHalfPlateHoriz(pnts, thickness, rho, pos=[0, -depth])
gza = gradGZHalfPlateHoriz(pnts, thickness, rho, pos=[0, -depth])
g, gz = solveGravimetry(mesh, rho, pnts, complete=True)

plot(x, ax[2], ga, gza, ax[3], g, gz)

Total running time of the script: ( 0 minutes 0.377 seconds)

Generated by Sphinx-Gallery

News (Aug 2017):
pyGIMLi Paper out now! Download PDF here.

© 2017 - GIMLi Development Team
Created using Bootstrap and Sphinx. Last updated on Aug 15, 2017.