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Abstract

Many tasks in applied geosciences cannot be solved by single measurements, but require the integration of geophysical, geotechnical
and hydrological methods. Numerical simulation techniques are essential both for planning and interpretation, as well as for the
process understanding of modern geophysical methods. These trends encourage open, simple, and modern software architectures
aiming at a uniform interface for interdisciplinary and flexible modelling and inversion approaches. We present pyGIMLi (Python
Library for Inversion and Modelling in Geophysics), an open-source framework that provides tools for modelling and inversion
of various geophysical but also hydrological methods. The modelling component supplies discretization management and the
numerical basis for finite-element and finite-volume solvers in 1D, 2D and 3D on arbitrarily structured meshes. The generalized
inversion framework solves the minimization problem with a Gauss-Newton algorithm for any physical forward operator and
provides opportunities for uncertainty and resolution analyses. More general requirements, such as flexible regularization strategies,
time-lapse processing and different sorts of coupling individual methods are provided independently of the actual methods used.
The usage of pyGIMLi is first demonstrated by solving the steady-state heat equation, followed by a demonstration of more
complex capabilities for the combination of different geophysical data sets. A fully coupled hydrogeophysical inversion of electrical
resistivity tomography (ERT) data of a simulated tracer experiment is presented that allows to directly reconstruct the underlying
hydraulic conductivity distribution of the aquifer. Another example demonstrates the improvement of jointly inverting ERT and
ultrasonic data with respect to saturation by a new approach that incorporates petrophysical relations in the inversion. Potential
applications of the presented framework are manifold and include time-lapse, constrained, joint, and coupled inversions of various
geophysical and hydrological data sets.

1. Introduction

In modern geophysical applications, it is often desired to maxi-
mize information on the subsurface by a combination of differ-
ent measurement methods. When dynamic changes are moni-
tored, an additional link to corresponding process models (e.g.,
hydrogeological or geomechanical models) can lead to an im-
proved process understanding and offers opportunities to esti-
mate multi-physical parameters of the subsurface. Joint and
process-based inversions are therefore thriving research topics
in the emerging field of hydrogeophyics (e.g., Binley et al.,
2015; Linde and Doetsch, 2016).

However, such endeavors are associated with considerable tech-
nical challenges. The required coupling of different numerical
models represents a potential impediment for many practition-
ers and students. Even technically versatile users commonly
end up building individually tailored solutions by linking var-
ious existing (and potentially commercial) software packages
through scripts, which hinders the reproducibility of scientific
findings (Peng, 2011). This motivates and supports the need for
open, simple, and modern software architectures for the main
numerical tasks in geophysics.

∗carsten.ruecker@mailbox.org

Uieda et al. (2013) present a software for geophysical data anal-
ysis with a focus on gravity and magnetic methods. Forward
modelling routines are available to simulate gravitational and
magnetic fields on various 2D and 3D meshes including tes-
seroids (spherical prisms). The inversion package enables non-
linear parameter estimation with Levenberg-Marquardt, stee-
pest-decent, as well as Gauss-Newton approaches. Hansen et al.
(2013) provide a general inversion software for geophysical
problems. Linear inverse Gaussian problems are solved using
a least-squares solver, whereas general non-linear (i.e. non-
Gaussian) inverse problems are solved with an extended Metro-
polis algorithm. While the software provides flexible inversion
approaches for geophysical problems, its forward modelling
functionality focuses on linear and non-linear travel time com-
putations. Schaa et al. (2016) present a finite-element library
for the solution of linear and non-linear, coupled, and time-
dependent partial differential equations. The authors demon-
strate the modelling capabilities based on 3D electrical resistiv-
ity and 2D magnetotelluric simulations. Cockett et al. (2015)
present a software for simulation and gradient based parameter
estimation in geophysics. Their approach is based on finite vol-
ume discretizations on structured and semi-structured meshes
and includes convex optimization algorithms. The authors state
that joint and integrated inversions are generally possible by
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means of multiple misfit functions, physics, and regularization
functionals.

The above-mentioned software packages are open-source, well-
documented, and aim at extensibility and reproducibility of geo-
physical simulations. With a comparable motivation in mind,
we present pyGIMLi (Geophysical Inversion and Modelling Li-
brary in Python), a versatile and computationally efficient frame-
work for modelling and inversion in geophysical applications.
In contrast to existing approaches, pyGIMLi explicitly targets
modern aspirations in geophysics including constrained, joint,
and process-based inversions together with the required for-
ward modelling necessities.

pyGIMLi has been in active development since 2009 and of-
fers modular functionality accessible from different levels of
abstraction aiming at satisfying the diverse needs in research
and education. The Python programming language was cho-
sen as the basis for pyGIMLi for its free, flexible, and cross-
platform-compatible nature, which therefore makes it widely
used in the (geo)scientific community (e.g., Guyer et al. , 2009;
Logg and Wells, 2010; Pérez et al., 2011; Wellmann et al., 2012;
Uieda et al., 2013; Cockett et al., 2015; Weigand and Kemna,
2016; Hector and Hinderer, 2016; Schaa et al., 2016). One dis-
tinct advantage is that it can be easily extended by compiled
modules from C or Fortran for example, allowing users to ex-
tend legacy code or outsource time-consuming parts in compu-
tationally efficient extensions. We make use of this flexibility
and have implemented all runtime sensitive parts in a C++ core
library. Complete Python bindings to this core library are com-
plemented by functionality written in pure Python, thus offering
both efficiency and flexibility for the rapid development of ro-
bust modelling and inversion applications. The modelling com-
ponent offers mesh management as well as finite-element and
finite-volume solvers in 1D, 2D and 3D. The inversion compo-
nent is based on a deterministic Gauss-Newton algorithm and
works with any physical forward operator provided. Several
post-processing routines are provided to visualize results in 2D
using Matplotlib (Hunter, 2007) and in 3D using the software
ParaView (Ayachit, 2015) or Mayavi (Ramachandran and Varo-
quaux, 2011).

After an introduction of the software architecture including de-
tailed descriptions of the different abstraction levels, the gen-
eralized inversion framework is presented. This is followed by
a demonstration on how to perform basic modelling. We then
emphasize the main purpose of pyGIMLi, i.e. readily integrat-
ing interdisciplinary data sets, by two applications: i) a fully
coupled hydrogeophysical inversion that directly inverts for the
hydraulic conductivity distribution of the aquifer and ii) a new
petrophysical joint inversion based on electrical resistivity and
travel time tomography to directly estimate water saturation.

2. Software design

The main tasks to solve with pyGIMLi are modelling and in-
version. The modelling component is realized with a finite

element/volume toolbox with all common cell shapes for lin-
ear and quadratic base functions in 1D, 2D, and 3D domains.
The default inversion is implemented with a generalized Gauss-
Newton approach with flexible regularization.

In addition to the core library, the extension part of pyGIMLi
also consists of third-party dependencies that provide advanced
functionality. We use mesh generators like Triangle (Shewchuk,
1996), Tetgen (Si, 2015) and Gmsh (Geuzaine and Remacle,
2009), as well as high-level numerical solvers like SuiteSparse
(Davis, 2006).

Figure 1 shows the basic architecture of pyGIMLi with differ-
ent abstraction levels written in Python. Based on the extension
part, there are Python modules to exploit the easy-to-use script-
ing ability and to provide classes that are easier to maintain and
to test. The equation level provides a general interface for the
solution of common partial differential equations (PDE). The
modelling level provides functionality of forward operators that
aim for supporting specific geophysical methods.

In the application level, we define general frameworks to solve
basic and advanced inversion tasks like time-lapse or joint in-
version. The method managers combine all levels to solve the
complete task for geophysical problems with specific data. All
these abstraction levels communicate through unified interfaces
and can thus be combined independently from the underlying
geophysical method.

Figure 1: Software architecture of pyGIMLi illustrating its components and
different abstraction levels. The Python library has been built on top of a C++

core and several external dependencies (yellow box).
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2.1. C++ core library

Python is a powerful scripting language for rapid development
progress, but lacks runtime performance for pure Python code.
It supports multiple paradigms that allow functional and ob-
ject oriented programming and can be easily extended by pre-
compiled high performance C++ extensions. We developed a
C++ core library with a strong object oriented design for all
runtime sensitive needs and provide full access to all parts of
this core library by automatically generated Python bindings.

One main benefit of using Python is abstract prototyping, e.g.,
we implemented the main inverse solver in C++ with the use
of an abstract base matrix and can use it with any custom ad-
vanced matrix directly from Python. This results in flexibility of
the used matrix types with minimal coding effort and minimal
runtime impairments. In addition to dense and different types
of sparse matrices, there are specialized matrices like row or
column-scaled matrices or Kronecker matrices. Furthermore,
we implemented a block matrix containing references to a num-
ber of matrices of arbitrary type. It can be used for efficient con-
straint matrices or joint Jacobian matrices without performance
loss.

For the high flexibility of regularization, we implemented a so
called ”region concept”, where one can define parts of the in-
version domain and treat, configure, or couple these regions in-
dividually. An overview of the background and different possi-
bilities of incorporating information is given by Rücker (2011).
Coscia et al. (2011) represents an ERT inversion example, where
different subsurface parts (geological layers, boreholes) have
been decoupled and treated by different regularization opera-
tors.

The main performance drawback of the Python interpreted lan-
guage is repeating code through nested loops due to the dy-
namic type conversion of the Python interpreter, which needs
considerable time between two script instructions. A numer-
ical package applying advanced geometry and mesh features
spends significant runtime in mesh management, numerical in-
tegration, interpolation, or common tasks like nearest-neighbor
search. Therefore, we implemented mesh management and re-
lated functionality as part of the C++ core library.

The majority of numerical approaches to the solution of partial
differential equations (PDE) are based on a spatial discretiza-
tion, called mesh or grid. A mesh combines N nodes, C cells,
and B boundaries and represents the modelling domain Ω =

∪C
i=1Ci and its outer boundary Γ = ∂Ω = ∪B

j=1B j. A Mesh
can be imported from external mesh generators or generated by
provided utility functions.

We consider a grid to be a structured form of a mesh (e.g.,
a regular discretization into quadrangles or hexahedrons) and
treat them equally. Nodes N = {Ni(r)} with i = 1 . . .N repre-
sent N discrete position vectors r ∈ R1, R2, or R3. A cell C
is a collection of nodes that spans the subdomain ΩC = ∪N j

in the same dimensional space of the nodes. As cell shapes

we implemented simplexes such as triangles, quadrangles in
R2 and tetrahedrons, hexahedrons, or prisms in R3. Different
cell types can be combined in one mesh, to combine struc-
tured discretization in the region of interest with progressively
unstructured coarsening towards the boundaries for example.
A boundary B is a collection of nodes spanning a subdomain
ΓC = ∂ΩC = ∪N j representing the outer boundary of cell. The
boundary shapes arise as a result of the associated cell shape
and are edges in R2 and triangles or quadrangles in R3. For all
shapes we provide numerical integration rules for several base
functions to assemble the numerical prerequisites for finite ele-
ment and finite volume analyses.

2.2. Equation level

The equation level provides an interface to solve common PDEs
on a given mesh, which comprises all geometric specifications,
e.g., topography or known subsurface structures. Currently the
equation level provides entry points for solving the following
two main PDE types, which cover a wide range of methods in
applied geophysics from potential fields to wave propagation.

The finite element method (FEM) with linear or quadratic basis
functions solves

∂u
∂t

= ∇ · (a∇u) + bu + f (r, t) (1)

u(r, t) = uB r ∈ ΓDirichlet

∂u(r, t)
∂n

= u∂B r ∈ ΓNeumann

u(r, t = 0) = u0 with r ∈ Ω

for u = u(r, t) with r be the node positions by calling:

u = pygimli.solver.solveFiniteElement(mesh, a, b, f,

uB, duB, t, u0)

The finite volume method (FVM) with linear basis functions
solves

∂u
∂t

+ v · ∇u = ∇ · (a∇u) + bu + f (r, t) (2)

u(r, t) = uB r ∈ ΓDirichlet

∂u(r, t)
∂n

= u∂B r ∈ ΓNeumann

u(r, t = 0) = u0 with r ∈ Ω

for u = u(r, t) with r at the cell centers by calling:

u = pygimli.solver.solveFiniteVolume(mesh, a, b, v, f,

uB, duB, t, u0)

The solution space u = u(r, t) can be ∈ R|C for r ∈ R1,R2,R3.
The coefficients a, b, c, v, uB, u∂B might be zero, scalars, arrays
or functions(N|C|B, t) that are evaluated at runtime, e.g.,
they might be the solution of another solver run.
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Note, that both solver functions are designed to give the user
an easy as possible access to the modelling capabilities of the
core library. However, most common elliptical, parabolic, and
advection-type problems can be solved with these two func-
tions, hyperbolic or curl-operator based systems can only be
approached by nesting two parabolic equations. The accuracy
of parabolic FVM is limited due to the linear base functions.
Fortunately, highly specialized state-of-the art Python libraries
exist (Guyer et al. , 2009; Logg and Wells, 2010), which can be
easily integrated if higher accuracy is needed.

2.3. Modelling level

The physics level represents a collection of classes to solve a
forward or simulation task for a specific geophysical discipline
by utilizing the equation level or applying suitable calculations.
A forward operator (FOP) F (m(r, t)) maps a discrete parameter
distribution m = {m j} with j = 1 . . . M model parameters to the
data vector d = {di}with i = 1 . . .N data. Each FOP is inherited
from the base class ModellingBase implemented in the C++

core library and is accessed by the generalized interface:

class ForwardOperator(ModellingBase):

...

def response(self, model):

"""Perform forward modelling d=f(m)."""

...

return data

def createJacobian(model):

"""Create Jacobian matrix for a given model."""

...

# Code to fill the predefined Matrix

# typical uses are:

fop = ForwardOperator(...)

data = fop.response(model)

fop.createJacobian(model)

J = fop.jacobian()

The method response needs to be filled with the appropriate
numerical calculation. Note that the spatial or temporal dis-
cretization required in inversion is usually different to the nu-
merical needs for accurate forward modelling. Therefore, py-
GIMLi provides inter- and extrapolation tools to map param-
eters from one mesh to another or assigning them to specific
regions.

The method createJacobian is the interface for calculating
the entries of the Jacobian matrix:

J(m) =
∂F (m)
∂m

= {Ji, j} with Ji, j =
∂di

∂m j
(3)

that might be needed for an inversion, but as it depends on the
modelling problem, its part of the forward operator. It is bene-
ficial to implement createJacobian with an method-specific
Jacobian generation approach. However, if this function is not
implemented, the base class ModellingBase provides a paral-
lelized default mechanism to fill the entries for J using a finite-
difference (brute-force) approach, i.e., repeated forward calcu-
lations with perturbed model parameters.

The implemented forward operators are summarized in Table 1:

2.4. Application level

The highest abstraction layer is the application level, and there-
fore it represents the first entrance point for scientific develop-
ment and end-user interaction. It contains method-independent
frameworks and method-specific managers with embedded apps.

2.4.1. Method managers and applications

The method managers represent the state of application that
provides a full set of actions to proceed all tasks for a single
discipline in applied geophysics and are considered entry points
for end user interaction. These classes use a preconfigured in-
stance of the generalized inversion framework and apply an ap-
propriate forward operator with unified interfaces so that the
methods simulate and invert are automatically available and
controlled by keyword lists. Additionally, each method should
provide the method-specific functions loadData, showData

and showResults.

A typical use of a method manager to visualize and invert data
for the example of ERT is:

ert = ERTManager()

ert.loadData('data.dat')
ert.showData()

ert.invert(**suitableOptions)

ert.showResults()

There are managers for practically all methods (Table 1) and
combinations of them. Some are already including frameworks
like LCI-type inversion (e.g., Costabel et al., 2016) or block-
joint inversion (e.g., Günther and Müller-Petke, 2012). More-
over, there are managers involving simpler forward algorithms
like fitting of complex conductivity/permittivity spectra (Loewer
et al., 2016; Hupfer et al., 2016).

2.4.2. Inversion frameworks

Inversion frameworks are generalized, abstract approaches to
solve a specific inversion problem without specifying the appro-
priate geophysical methods. This can be a specific regulariza-
tion strategy, an alternative formulation of the inverse problem
or algorithms of routine inversion. It is initialized by specific
forward operators or managers that provide them. An example
of how such an inversion framework is constructed for a petro-
physical joint inversion is given in Appendix C.

Gauss-Newton inversion. The default inversion framework is
based on the generalized Gauss-Newton method and is com-
patible with any given forward operator and thus applicable to
various physical problems. We state the inversion problem as
minimization of an objective function consisting of data misfit
and model constraints:

‖Wd(F (m) − d)‖22 + λ‖Wm(m −m0)‖22 → min (4)
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Table 1: Currently implemented forward modelling algorithms in pyGIMLi.

Method Implementation Dimension Key references

Vertical Electrical soundings Filter coefficients 1D Günther and Müller-Petke (2012)

Electrical Resistivity Tomography FE 2D/3D Rücker et al. (2006); Günther et al. (2006)

(Spectral) Induced Polarization FE (complex-valued) 2D/3D Günther et al. (2016)

Frequency-domain EM (FDEM) Hankel transformation 1D Günther (2013)

Time-domain EM FDEM 1D Costabel et al. (2017)

Magnetic resonance FDEM 1D/2D Günther and Müller-Petke (2012); Dlugosch et al.
(2014)

Magnetotellurics Wait algorithm 1D

Seismic traveltime/refraction shortest path or fast marching
method

2D Heincke et al. (2010); Ronczka et al. (2017)

Gravimetry and magnetics line integrals 2D/3D

Flow and transport FE / FV 2D/3D subsection 3.2

Streaming potential FE 2D/3D

Note that we do not include inequality constraints in the min-
imization but use transformations to restrict parameters to rea-
sonable ranges (e.g., Kim and Kim, 2011). Wd is the data
weighting matrix containing the inverse data errors, Wm is the
model constraint matrix (e.g., a first-order roughness operator),
and m0 is a reference model. The dimensionless factor λ scales
the influence of the regularization term. There is a wide range of
different regularization methods (different kinds of smoothness
and damping, mixed operators, anisotropic smoothing) The ex-
isting ones can be used flexibly to constrain different model pa-
rameters or subsurface parts (regions), but also be extended by
own functions. The application of the Gauss-Newton scheme
on minimizing (4) yields the model update ∆mk in the kth itera-
tion (Park and Van, 1991):

(JTWd
TWdJ + λWm

TWm)∆mk = JTWd
TWd(∆dk)

−λWm
TWm(mk −m0) (5)

with ∆dk = d − F (mk) and ∆mk = mk −mk−1

which is solved using a conjugate-gradient least-squares solver
(Günther et al., 2006). The inversion process including the
region-specific regularization is sketched in Fig. 2.

All matrices of the inversion formulation can be directly ac-
cessed from Python and thereby offer opportunities for uncer-
tainty and resolution analysis as well as experimental design
(e.g., Wagner et al., 2015). Beyond different inversion approach-
es there are so-called frameworks for typical inversion (mostly
regularization) tasks. Examples that are already implemented
in pyGIMLi are for example:

Marquardt scheme inversion of few independent parameters,
e.g., fitting of spectra (Loewer et al., 2016)

Soil-physical model reduction incorporating soil-physical func-
tions (Igel et al., 2016; Costabel and Günther, 2014)

Figure 2: Generalized inversion scheme. Already implemented (Table 1) or
custom forward operators can be used that provide the problem specific re-
sponse function and its Jacobian. Various strategies are available to regularize
the inverse problem.

Classical joint inversion of two data sets for the same param-
eter like DC and EM (Günther, 2013)

Block joint inversion of several 1D data using common lay-
ers, e.g., MRS+VES (Günther and Müller-Petke, 2012)

Sequential (constrained) inversion successive independent in-
version of data sets, e.g., classic time-lapse inversion (e.g.,
Hübner et al., 2015)

Simultaneous constrained inversion of data sets of data neigh-
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bored in space (LCI, e.g., Costabel et al., 2016), time (full
time-lapse) or frequency (Günther and Martin, 2016)

Structurally coupled cooperative inversion of disparate data
based on structural similarity (e.g., Ronczka et al., 2017)

Structure-based inversion using layered 2D models (Attwa
et al., 2014)

3. Exemplary applications

To demonstrate the usage of pyGIMLi, several examples are
given along with the code. For the sake of brevity, all examples
use minimalist 2D geometries, but are directly transferable to
3D and more complex geometries, if a corresponding mesh is
provided.

3.1. Simulating heat transfer based on a simple geometry

A simplistic modelling example shows the basic steps for solv-
ing a steady-state heat equation on the equation level. Figure 3
shows the complete Python source code and the resulting im-
ages for model creation and finite element calculation. In the
preamble (Fig. 3, lines 1,2) the necessary pyGIMLi namespace
and the pyGIMLi mesh generation package are imported and
abbreviated with the alias names pg and mt, respectively.

We assume three layers with a block inside the second layer.
pyGIMLi provides basic geometry building utilities accessible
through the package alias mt. The commands mt.createWorld
and mt.createBlock create the desired geometric entities that
are combined by the command mt.mergePLC (Fig. 3, line 12).
The resulting geometry definition, so called piecewise linear
complex (PLC), contains nodes, boundary elements, and re-
gion descriptions to represent the entire model geometry. Fig. 3
line:13 creates an image of the model geometry using the com-
mand pg.show, which is the most straightforward way to view
meshes, geometries, and data.

As we need a mesh, we forward the given PLC to the exter-
nal mesh generator called Triangle (Shewchuk, 1996). The
pg.show command is used again to view the resulting mesh
(Fig. 3 line:17).

In the next step, we use solveFiniteElement from the equa-
tion level directly with the generated mesh to perform the FEM
calculation. The arguments configure the requested PDE and
control the underlying material parameters and boundary con-
ditions. Most arguments are treated in a flexible manner, e.g., in
this case a is a map that translates the four markers of the four
geometry regions into a distribution of the thermal diffusivity
a to create a layered background of a = [1, 2, 3] m2/s with the
heterogeneous block (region 4) to be a = 0.1 m2/s. The bound-
ary conditions are controlled with the uB argument, e.g., as of
Dirichlet type with a fixed temperature T = 1 K for the bound-

1 import pygimli as pg
2 import pygimli.meshtools as mt
3

4 # Create geometry definition for the modelling domain
5 world = mt.createWorld(start=[-20, 0], end=[20, -16],
6 layers=[-2, -8], worldMarker=False)
7 # Create a heterogeneous block
8 block = mt.createRectangle(start=[-6, -3.5], end=[6, -6],
9 marker=4, boundaryMarker=10)

10 # Merge geometrical entities
11 geom = mt.mergePLC([world, block])
12 pg.show(geom, boundaryMarker=True, savefig='geometry.pdf')
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13 # Create a mesh from the geometry definition
14 mesh = mt.createMesh(geom, quality=33, area=0.2)
15 pg.show(mesh, savefig='mesh.pdf')

20 15 10 5 0 5 10 15 20
16
14
12
10

8
6
4
2
0

16 # Solve for T: ∇ · (a∇T ) = 0 with T (bottom) = 1, T (top) = 0
17 T = pg.solver.solveFiniteElements(mesh, a=[[1, 1.0], [2, 2.0],
18 [3, 3.0], [4, 0.1]],
19 uB=[[8, 1.0], [4, 0.0]])
20 ax, _ = pg.show(mesh, data=T,
21 label='Temperature $T$', cmap="hot_r")
22 pg.show(geom, ax=ax, fillRegion=True, savefig='T_field.pdf')
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0 0.26 0.53 0.79 1.1
Temperature T

Figure 3: Commented pyGIMLi code to simulate the steady heat equation.

ary with marker 4 (bottom) and a fixed temperature T = 0 K
at the boundary with marker 3 (surface). The other boundaries
obtain natural Neumann (no-flow) boundary conditions by de-
fault.

The array for the resulting temperature distribution T can then
be viewed by the calling pg.show again. The pg.show com-
mand can be also used to combine several plotting approaches
to achieve the final result image of the given geometry with the
estimated temperature distribution.
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3.2. Fully coupled hydrogeophysical inversion

Monitoring of hydraulic processes with geophysical methods
has become very popular. The classic way is to solve the geo-
physical problem, followed by later analysis to infer hydraulic
properties. In recent years, a small number of approaches were
presented that estimate hydraulic conductivity directly from geo-
physical observations (e.g., Pollock and Cirpka, 2010; Mboh
et al., 2012; Camporese et al., 2015; Wagner, 2016). The small
number of available approaches, however, mostly relies on cus-
tomized and often proprietary software prohibiting reuse and
advancement by other researchers. In the following, we show
that coupled problems can be readily solved using pyGIMLi in
a consistent and fully reproducible manner by a concatenation
of hydraulic and geophysical simulations linked through petro-
physical transformations.

We apply the geometry of the example from Sec. 3.1 and map
hydraulic conductivities to the different regions of the model as
shown in Fig. 4. The first layer of the model is considered a
non-conducting topsoil followed by a conductive aquifer and a
less conductive basement. The heterogeneous block inside the
aquifer is assumed to represent a low conductive anomaly.

20 15 10 5 0 5 10 15 20
x [m]

16
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10

8

6

4

2

0

D
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th
 [m

]

1.0e-05 1.0e-04 0.0010 0.010
Hydraulic conductivity K in m/s

K = 5 · 10−3 m/s

K = 1 · 10−4 m/s

K = 8 · 10−4 m/s

Figure 4: Hydraulic conductivity distribution for the fully coupled joint inver-
sion test case.

The flow velocity of fluids in a porous medium of slow non-
viscous and non-frictional hydraulic movement is governed by
the Darcy equation (Whitaker, 1986):

K−1v + ∇p = 0 (6)
∇ · v = 0 (7)

leading to

∇ · (K∇p) = 0 on Ω (8)

with the hydraulic conductivity tensor K.

We can solve equation (8) on the equation level for a given hy-
draulic potential p = p0 = 0.75 m on the left and p = 0 on the
right boundary of the modelling domain, equaling a hydraulic
gradient of 1.75%. The sought hydraulic velocity distribution
can then be calculated as the gradient field of v = −∇p. Ex-
tending the example with the following code fragment:

30 # Map regions to hydraulic conductivity in m/s
31 kMap = [[1, 1e-8], [2, 5e-3], [3, 1e-4], [4, 8e-4]]
32 # Map conductivity value per region to each given mesh cell
33 K = pg.solver.parseMapToCellArray(kMap, mesh)
34 # Dirichlet conditions for hydraulic potential
35 pBound = [[[1, 2, 3], 0.75], [[5, 6, 7], 0.0]]
36 # Solve for hydraulic potential
37 p = pg.solver.solveFiniteElements(mesh, a=K, uB=pBound)
38 # Solve velocity as gradient of hydraulic potential
39 vel = -pg.solver.grad(mesh, p) * np.asarray([K, K, K]).T

leads to the velocity distribution displayed in Fig. 5.

The flow direction is from left to right and exhibits an increased
velocity in the aquifer due to its larger hydraulic conductivity.
The anomaly in the aquifer considerably interferes the velocity
field and causes the field to circumvent this rectangular body.
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Figure 5: Hydraulic velocity field for the given hydraulic conductivity as a
result of a horizontal potential gradient.

In the next step we use this velocity field to simulate the dy-
namic movement of a particle (e.g., salt) concentration c(r, t)
in the aquifer by using the advection-diffusion equation (e.g.,
Bechtold et al., 2012)

∂c
∂t

= ∇ · (D∇c) − v · ∇(c) + S (9)

as a result of a source S . The molecular diffusion coefficient
D (in water ≈ 1 · 10−9 m2/s) is negligible. However, in porous
media a diffusion-like spreading characteristics called disper-
sion takes place that is governed by the same term. We choose
a common velocity-depending dispersion coefficient D = α|v|
with a dispersivity α = 1 · 10−2 m (Bechtold et al., 2012). The
particles are injected for six days at the position rs(x = −19.1,
y = −5.0) in the aquifer with an amount of S = 0.001 g/ls.
The whole simulation time is 12 days in summary and we used
1 600 time steps to fulfill the Courant-Friedrichs-Lewy condi-
tion (Courant et al., 1967) ensuring the particle movement does
not exceed cell dimensions within one time step.

Solving equation (9) on the equation level with the finite vol-
ume solver results in a particle concentration c(r, t) (in g/l) for
each cell center and time step. The following extension to the
minimalist script:
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48 # Fill injection source vector for a fixed injection position
49 sourceCell = mesh.findCell([-19.1, -4.6])
50 S[sourceCell.id()] = 1.0/sourceCell.size() #g/(l s)
51 # Choose 800 time steps for 6 days in seconds
52 t = pg.utils.grange(0, 6 * 24 * 3600, n=800)
53 # Create dispersitivity, depending on the absolute velocity
54 dispersion = pg.abs(vel) * 1e-2
55 # Solve for injection time, but we need velocities on cell nodes
56 vel = mt.cellDataToNodeData(mesh, vel)
57 c1 = pg.solver.solveFiniteVolume(mesh, a=dispersion, f=S, vel=vel,
58 times=t, uB=[1, 0],
59 scheme='PS', verbose=0)
60 # Solve without injection starting with last result
61 c2 = pg.solver.solveFiniteVolume(mesh, a=dispersion, f=0, vel=vel,
62 u0=c1[-1], times=t, uB=[1, 0],
63 scheme='PS', verbose=0)
64 # Stack results together
65 c = np.vstack((c1, c2))

leads to the resulting temporal and spatial distribution of the
concentration c and is shown in Figure 6 after 0, 2, 4, 6, 8, and
10 days.
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Figure 6: Simulated salt concentration in the aquifer for selected time steps.
Green dots mark the electrode positions.

We clearly see the particles spreading from the injection point
and moving within the aquifer. The low conductive heteroge-
neous block disturbs the flow field and forces a large portion of
the salt tracer to circumvent the obstacle. After 6 days the in-
jection stops and the particle are washed out by the groundwa-
ter flow. The particles penetrate the heterogeneous block more
slowly and remain longer due to the lower flow velocity.

If we assume a dominance of electrolytic conduction and asso-
ciate the concentration with salt content, the tracer experiment
can be well monitored by geoelectric measurements (Nguyen
et al., 2009; Doetsch et al., 2012; Wagner et al., 2013). The
fluid resistivity ρf is obtained by a linear transformation:

ρf =
1

0.1 · c + σ0
(10)

with a conductivity of groundwater σ0 = 0.1 mS/cm and a con-
version factor after Sulzbacher et al. (2012) based on in-situ
data.

The Archie equation relates the bulk electrical resistivity of a
medium ρ to the fluid resistivity ρf and saturation S depending
on porosity φ (Archie, 1942):

ρ = a ρf φ
−mS −n (11)

The tortuosity factor a and the saturation exponent n are com-
monly assumed to be a = 1 and n = 2, respectively. The ce-
mentation exponent m is assumed to equal 2 (standard for sand-
stones). We assume no fluid saturation in the top layer and full
saturation in the aquifer with a porosity of φ = 0.3.

To simulate synthetic data, i.e., apparent resistivities, we ap-
ply a dipole-dipole array with 41 equally spaced electrodes.
Note that, compared to the Darcy simulation, ERT modelling
requires specific boundary conditions and some mesh refine-
ment (Rücker et al., 2006). Therefore, we create a suitable ERT
forward mesh and interpolate the bulk resistivity values. From
the 1 600 advection time frames, we select 10 to simulate the
ERT data by applying the resistivity values and the measuring
scheme to the ERT Manager and call the simulate interface.
The minimalist example code can be extended by the following
code snippet:

69 # Create survey measurement scheme
70 ertScheme = ert.createERTData(pg.utils.grange(-20, 20, dx=1.0),
71 schemeName='dd')
72 # Create suitable mesh for ert forward calculation
73 meshERT = mt.createParaMesh(ertScheme, quality=33,
74 paraMaxCellSize=0.2,
75 boundaryMaxCellSize=50)
76 # Select 10 time frame to simulate ERT data
77 timesERT = pg.IndexArray(np.floor(np.linspace(0, len(c)-1, 10)))
78 # Create conductivity of fluid for salt concentration c
79 sigmaFluid = c[timesERT] * 0.1 + 0.01
80 # Calculate bulk resistivity based on Archie's Law
81 # interpolate them to the ert mesh
82 resBulk = petro.resistivityArchie(rFluid=1. / sigmaFluid,
83 porosity=0.3, m=1.3, mesh=mesh,
84 meshI=meshERT, fill=1)
85 for i, rBulkI in enumerate(resBulk):
86 resis[i] = 1. / ((1./rBulkI) + 1./rhoaBackground)
87 # Initialize ERT method manager
88 ERT = ERTManager(verbose=False)
89 # Run simulation for the apparent resistivities
90 rhoa = ERT.simulate(meshERT, resis, ertScheme, returnArray=True)

to create ERT dataset of apparent resistivities, which are shown
in Fig. 7. The main characteristics of the tracer movement are
clearly reflected by the measurement.

There are several approaches for inversion of time-lapse ERT
data, like sequential inversion (e.g., Coscia et al., 2011), dif-
ference inversion (e.g., Bechtold et al., 2012), or 4-D inversion
(Karaoulis et al., 2013). These approaches are available through
pyGIMLi frameworks and result in a spatio-temporal resistiv-
ity distribution. Depending on temporal and spatial resolution,
it might be possible to find out a single hydraulic conductivity
value by analyzing breakthrough curves or similar techniques.
However, in this case we go one step further and combine all
simulation steps together into a sequentially coupled forward
operator that maps a distribution of hydraulic conductivities
(Fig. 4) into a set of apparent resistivities (Fig. 7) for each
timestep. As a result, we are able to invert for the hydraulic
conductivity directly (Mboh et al., 2012).
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Figure 7: Simulated dipole-dipole data of six consecutive measurements to
monitor the migration of a saline tracer illustrated in Fig. 6.

The forward operator provides the necessary interface and can
be used by the basic inversion framework to perform a fully
coupled hydrogeophysical inversion from measured apparent
resistivities to an image of hydraulic conductivity within the
aquifer.

As an efficient and optimized exact generation of the Jacobian
matrix is not easily possible for an arbitrarily coupled system,
a brute-force Jacobian calculation is performed by solving the
forward problem for each unknown model cell. As this task
can be easily parallelized, it is automatically done if multiple
processors are detected. Furthermore, we limit the number of
unknown parameters regarding the possible resolution of the
inverse problem and to reduce the numerical effort.

We apply the pyGIMLi region concept to introduce three re-
gions, of which two are treated as fixed regions with known
hydraulic conductivities on the top and at the bottom of the
domain. The assumed aquifer is subdivided into 256 rectan-
gular parameter regions and further into a fine triangular for-
ward mesh above to ensure numerical accuracy (Fig. 8). The
inversion starts with a homogeneous model and converged fit-
ting the simulated ERT data within the assumed data error. The
hydraulic conductivity distribution illustrated by Figure 8 re-
sembles the main characteristics of the synthetic model both
structurally and concerning the mean values.

Note that the example serves as a proof of concept and is in-
tended to demonstrate that complex workflows can be easily
realized using the flexible modelling and inversion framework
presented. Yet it should be noted that geophysics-based recon-
struction of hydraulic conductivity is considerably challenged if
the scenario becomes more realistic (e.g., 3D, unsaturated flow,
temperature effects).
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Figure 8: Parameterization of forward (triangles) and inversion (rectangles)
with inversion result of the fully coupled hydrogeophysical inversion.

3.3. Petrophysical joint inversion

Joint inversion of different geophysical techniques helps to im-
prove both resolution and interpretability of the resulting im-
ages. Different data sets can be directly coupled, if there is
a link to an underlying target parameter. This is also possi-
ble if the relations are not known beforehand (Heincke et al.,
2017). The following example assumes the relations as known
and demonstrates the framework concept for a petrophysically
coupled joint inversion of two geophysical methods in a few
simple steps. We use the existing method managers for ERT
(pg.physics.ERTManager) and travel-time tomography (TT)
(pg.physics.Refraction), which both provide ready-to-use
simulation and inversion capabilities.

Initially, we apply both method managers to create synthetic
data sets. Figure 9 shows the used mesh (mMesh) for a laboratory-
scale circular model (e.g., a sandstone column) with constant
porosity φ = 0.3 and heterogeneous water saturation S , which
is investigated using ERT and ultrasonic tomography.
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Figure 9: Finite element mesh and assumed water saturation used for petro-
physical inversion.

To create geophysical parameter distributions, we apply com-
mon empirical petrophysical models, e.g., Archie’s equation
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(eq. 11) that provides the resistivity ρ as a function of satura-
tion S . Sonic velocity v (or its reverse, the slowness s) as a
function of porosity φ and saturation S is given by the time-
average equation (Wyllie et al., 1956):

s =
1
v

= (1 − φ)
1

vm
+ φS

1
vw

+ φ(1 − S )
1
va

(12)

We assume a matrix velocity vm = 4000 m/s, a water velocity
vw = 1484 m/s and an air velocity va = 343 m/s.

pyGIMLi contains a collection of mechanisms for forward- and
inverse value mapping provided by Trans classes. They can be
used for data and model scaling in the inversion process, e.g.,
by using logarithmic barriers (Kim and Kim, 2011) to restrict
parameters between given ranges. Similarly, petrophysical rela-
tions can be easily defined and also nested with other transforms
as range constraints. Assume the intrinsic parameter p depends
on the model parameter m. A transformation class needs to
provide a forward and a backward transformation as well as the
derivative of the transform, which is determined by a Newton
algorithm if not specified.

Trans.fwd(S) p(m) ρ = a ρf φ
−mS −n (13)

Trans.inv(rho) m(p) S =

(
aρf

ρφm

)1/n

(14)

Trans.deriv(rho)
∂p
∂m

∂ρ

∂S
= − n a ρf

φmS n+1 (15)

We apply these classes and create transformations for the men-
tioned petrophysical relations under the names ArchieTrans

for ERT and WyllieTrans for TT, respectively. The resistivity
res and velocity vel are generated for a given saturation by
running the simple code:

ertT = ArchieTrans(rFluid=20, phi=0.3)

res = ertT.fwd(saturation)

ttT = WyllieTrans(vm=4000, phi=0.3)

vel = 1.0/ttT.fwd(saturation)

Figure 10 shows the images for the resulting mapped ρ (res)
and v (vel) values. Note that although we show the commonly
used velocity, the slowness is the intrinsic linear parameter used
inside.

To create synthetic data sets, we assume 16 equally-spaced sen-
sors on the circumferential boundary of the mesh. For the ERT
modelling we build a complete dipole-dipole array. For the ul-
trasonic tomography we simulate the travel time for every pos-
sible sensor pair. The modelling itself is performed by call-
ing the simulate interface command of the individual method
managers, which create the data sets ertData for the resistivity
and ttData for the velocity parameter distribution. Addition-
ally, we add Gaussian noise with a standard deviation of 1% to
the synthetic data sets.

To avoid an inverse crime, where identical meshes are used for
both forward modelling and inversion (e.g. Colton and Kress ,
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Figure 10: Discretization of synthetic resistivity and velocity distribution.

1992), we create a new mesh for inversion, which holds no prior
information on the anomalies to be reconstructed. Therefore,
we create a second mesh pMesh representing the circular model
domain that is coarser compared to the simulation mesh and
contains no prior information on the anomalies. The simulated
data are inverted on the new parameterization using the default
inversion framework accessed through the interface command
invert provided by both method managers and can be read as:

ertS = createData(sensors, schemeName='dd')
ERT = pg.physics.ERTManager()

ertData = ERT.simulate(mMesh, res, ertS, noisify=1)

resInv = ERT.invert(ertData, mesh=pMesh)

ttS = createRAData(sensors)

TT = pg.physics.Refraction()

ttData = TT.simulate(mMesh, vel, ttS, noisify=1)

velInv = TT.invert(ttData, mesh=pMesh)

Figure 11 shows the resulting resistivity and velocity models.
Generally, they recover the main structures of the synthetic model.
The image of the resistivity distribution is more blurry but shows
both the low and high resistive parts. In contrary, the velocity
image shows sharper contrasts but lacks the low-velocity re-
gions.
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Figure 11: Resulting models of simple inversion for single geophysical param-
eters.
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To reconstruct saturation values from the resulting images one
can easily map the results back using the two transformation
classes discussed above. However, we rather want a petrophys-
ically constrained inversion as a more sophisticated way to di-
rectly recover the saturation m̂ = {S }.
To calculate the forward response F (m) and the Jacobian J
for a given saturation, we create a new forward operator called
PetroModelling, which is method independent but initialized
with preconfigured instances of a forward operator and a trans-
formation class. It handles the necessary transformation steps
and delegates the response and createJacobian commands
appropriately. The forward response for the transformed prob-
lem is written as:

F̂ (m) = F (p(m)) (16)
with trans : S 7→ ρ (ERT) and trans : S 7→ v (TT)

The Jacobian matrix for the transformed problem is obtained by
multiplication with the inner derivative of the transformation:

J =
∂F (m)
∂m

=
∂F (p)
∂p

∂p
∂m

(17)

For this we use a special matrix MultRightMatrix that holds
an inner matrix (for which the Jacobian generation already ex-
ists) and a vector to be multiplied with from the right. The
complete and concise implementation of the PetroModelling
class is given in Appendix A and can be directly used with the
generalized inversion framework.

As this is often used, an inversion framework PetroInversion
for this type of petrophysical inversion is provided. It can be
directly initialized by a method-specific manager and a trans-
formation class. All relevant information is requested by the
method managers provided and allows to construct a dedicated
petrophysical forward operator with a corresponding inversion
interface command (invert) and an additional argument
limits for the expected model value ranges (log-trans-
formation). The complete petrophysical inversion can then be
written in two lines of code:

ertPet = PetroInversion(ERT, ertTrans)

satERT = ertPet.invert(ertData, mesh=pMesh, limits=[0, 1])

ttPet = PetroInversion(TT, ttTrans)

satTT = ttPet.invert(ttData, mesh=pMesh, limits=[0, 1])

Figure 12 shows the resulting models for the petrophysically
constrained inversion for saturation of both synthetic data sets.
The characteristics from both results is similar to the conven-
tional geophysical inversions, but the saturation models are au-
tomatically constrained to meaningful values between of 0 and 1.

To combine the inherent information of both data sets in the
estimation of the same parameter, a general framework for joint
inversions is provided in pyGIMLi. The core for this framework
is a forward operator called JointModelling, which allows a
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Figure 12: Resulting models of the hydraulic saturation for single petrophysical
inversion of ERT and travel-time data.

simple stacking of F different forward operators to create the
appropriate model response and entries for the Jacobian matrix.

The model response is calculated by simply concatenating the
responses of the individual operators. The Jacobian matrix for
this type of concatenated problem can be efficiently formulated
using a a special kind of matrix that we call BlockMatrix. This
class allows arbitrary combinations of different matrix types
that are directly used in the inverse solver. In this case (differ-
ent data and different models) it has the shape of a block-Jacobi
matrix with the individual Jacobian matrices on the diagonal.
Block matrices is extremely helpful for a number of problems
where independent models are simultaneously inverted, e.g., for
LCI/SCI, time-lapse or spectral inversion (Günther and Mar-
tin, 2016). A minimal but complete implementation for the
JointModelling class if given in Appendix B.

To keep the usage simple, we created a petrophysical joint in-
version framework JointPetroInversion (see Appendix C),
which combines the two forward operators PetroModelling

and JointModelling. It is initialized by a set of method man-
agers and corresponding petrophysical transforms. The frame-
work manages the creation and delegation of the
JointModelling forward operator, synchronizes data and er-
ror handling and provides the usual interface commands to per-
form the calculation via:

jointPet = JointPetroInversion([ERT, TT],

[ertTrans, ttTrans])

satJoint = jointPet.invert([ertData, ttData],

mesh=pMesh, limits=[0, 1])

Figure 13 shows the resulting saturation image for the petro-
physical joint inversion. The result of the joint inversion pro-
vides an improved image compared to both single inversion re-
sults as combines the benefits of both methods: It shows sharper
contrasts than pure ERT and the regions of low and high satu-
ration are more clearly visible compared to single TT.

In real life, the parameters of the petrophysical relations might
not be known beforehand. However, it is straightforward to in-
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Figure 13: Resulting model of the hydraulic saturation for the petrophysical
joint inversion of simulated ERT and TT data.

clude a petrophysical parameter or even a distribution of it into
the inversion process along with appropriate range constraints.

4. Conclusions

We have presented pyGIMLi, a versatile open-source frame-
work for modelling and inversion in geophysics, which, due to
its generalized and object-oriented design, is particularly useful
to couple different measurement methods in joint or coupled
inversions. This was demonstrated by a fully coupled inver-
sion of time-lapse ERT data that allows to directly estimate the
hydraulic conductivity distribution of the aquifer. The multi-
physical forward operator provides the hydraulic and geoelec-
trical response of the tracer migration. It would thus be straight-
forward to also include hydrological data in the inversion to
better constrain hydraulic aquifer properties.

A new petrophysical joint inversion approach was introduced
and applied to ultrasonic and ERT combines the benefits of the
two methods for a more accurate quantification of water sat-
uration. In case of non-exactly known petrophysical parame-
ters (e.g., porosity) this scheme could be easily extended, even
without fixed relations. The availability of different forward
operators and a generalized inversion framework provides un-
precedented means of mutual model constraints. For example,
one could easily combine the joint inversion approach with the
hydrogeophysical inversion so that a joint hydrogeophysical in-
version for ERT data with hydrogeological (e.g. salinity or hy-
draulic head) data is achieved. All examples were generated
with pyGIMLi version 1.0 and are fully reproducible using the
scripts provided at http://cg17.pygimli.org.

Although the examples are based on simple 2D geometries for
the sake of demonstration, we point out that the dimension of
the problem is solely governed by the mesh provided, meaning
that all code examples are directly transferable to more complex
3D geometries. The modular functionality is accessible from
different abstraction levels and thereby offers entry points for
a wide range of users with different degrees of programming
experience:

Application level Data owners can easily analyze, invert and
visualize their data using predefined method managers.

Modelling level Users with custom forward operators can read-
ily setup a corresponding inversion workflow with flexi-
ble discretization and regularization controls.

Equation level Technically versatile practitioners can directly
access the finite element and finite volume solvers to ap-
proach various physical problems.

There is a lot of potential for improving the package on all lev-
els, starting from other PDE or element types over the integra-
tion of new methods to the extension of the inversion and reg-
ularization approaches. Particularly, we see benefits of combi-
nation with other open Python/C++ packages focusing on dif-
ferent methods.

To facilitate adoption and contribution of the geoscientific com-
munity, we have made the software package and all examples
shown in this paper freely available under the permissive Apache
2.0 license. Corresponding downloads and a comprehensive
documentation can be found on the project website http://www.
pygimli.org. The source code is hosted on GitHub (https://
github.com/gimli-org/gimli). By following modern software
development principles such as unit testing and continuous in-
tegration, robustness and validity of existing and new function-
ality is ensured. It is anticipated that the presented software
and ensuing developments will contribute to meet the mod-
ern data integration needs of researchers, practitioners, and stu-
dents, particularly in, but not limited to, the hydrogeophysical
community.
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Appendices

The following appendices contain the codes to carry out a petro-
physical joint inversion as shown in 3.3. The two modelling
operators for petrophysical modelling and joint modelling are
used in the framework to carry out the inversion. Note that the
implementations are independent on the actual methods and re-
lations to be used.
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Appendix A. Forward code for petrophysical inversion

The following class is a simple forward operator, which yields
the forward response of a target parameter (e.g., saturation) that
is connected to an intrinsic parameter (e.g., resistivity) by a
petrophysical relation (e.g., Archies law).

class PetroModelling(Modelling):

"""Combine relation m(p) with modelling f(p)."""

def __init__(self, fop, petro):

"""Initialize with instance of forward operator

and Trans., create a MultRightMatrix Jacobian."""

Modelling.__init__(self)

self.fop = fop

self.petro = petro

self.jac = pg.MultRightMatrix(self.fop.jacobian())

self.setJacobian(self.jac)

def response(self, model):

"""Transform and compute response f(p(m))."""

tModel = self.petro.fwd(model)

return self.fop.response(tModel)

def createJacobian(self, model):

"""Jacobian with inner derivative of the trans."""

self.fop.createJacobian(self.petro.fwd(model))

self.jac.r = self.petro.deriv(model)

Appendix B. Forward code for joint inversion

This modelling class can be used to combine several forward
operators that use the same model parameter (e.g., DC and EM
using resistivity). The responses are just concatenated and the
Jacobian is a block matrix consisting of the individual ones.

class JointModelling(Modelling):

"""Cumulative (joint) forward operator."""

def __init__(self, fopList):

"""Initialize with lists of forward operators.

Create a BlockMatrix Jacobian."""

Modelling.__init__(self)

self.fops = fopList

self.jac = pg.BlockMatrix()

def response(self, model):

"""Concatenate responses for all fops."""

resp = []

for f in self.fops:

resp.extend(f.response(model))

return resp

def createJacobian(self, model):

"""Fill the individual Jacobian matrices."""

for f in self.fops:

f.createJacobian(model)

def setData(self, data):

nData = 0 # start on top

for i, fi in enumerate(self.fops):

fi.setData(data[i])

self.jac.addMatrix(fi.jacobian(), nData, 0)

nData += data[i].size()

self.setJacobian(self.jac)

Appendix C. Inversion framework for petrophysical joint
inversion

The inversion framework combines the two modelling classes
and carries out a petrophysical joint inversion.

class JointPetroInversion(MeshInversion):

"""Framework combining joint and petro inversion."""

def __init__(self, mgrs, petros):

"""Initialize with lists of Managers and Trans."""

MeshInversion.__init__(self)

self.mgrs = mgrs

self.fops = [PetroModelling(m.createFOP(), p) \

for m, p in zip(mgrs, petros)]

self.tM = mgrs[0].tM

self.tD = pg.TransCumulative()

self.fop = JointModelling(self.fops)

self.setForwardOperator(self.fop)

def setData(self, data):

"""Set all data and let the Framework manage data

transformation and error handling"""

self.fop.setData(data)

self.dataVals = pg.Vector(0)

self.dataErrs = pg.Vector(0)

for i, mgr in enumerate(self.mgrs):

self.tD.add(mgr.tD, data[i].size())

self.dataVals = pg.cat(self.dataVals,

mgr.dataVals(data[i]))

self.dataErrs = pg.cat(self.dataErrs,

mgr.relErrorVals(data[i]))

self.inv.setTransData(self.tD)

def invert(self, data, **kwargs):

limits = kwargs.pop('limits', [0., 1.])

self.tM.setLowerBound(limits[0])

self.tM.setUpperBound(limits[1])

self.inv.setTransModel(self.tM)

kwargs['startModel'] = (limits[1]-limits[0])/2.

return MeshInversion.invert(self, data, **kwargs)
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Hübner, R., Heller, K., Günther, T., Kleber, A., 2015. Monitoring hillslope
moisture dynamics with surface ert for enhancing spatial significance of hy-
drometric point measurements. Hydrology and Earth System Sciences 19,
225–240. doi:10.5194/hess-19-225-2015.

Igel, J., Stadler, S., Günther, T., 2016. High-resolution investigation of the
capillary transition zone and its influence on GPR signatures, in: Ext. Abstr.,
SAGEEP, Denver, USA. doi:10.4133/SAGEEP.29-046.

Karaoulis, M., Revil, A., Tsourlos, P., Werkema, D.D., Minsley, B.J., 2013.
IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced po-
larization tomography. Near Surf. Geophys. 54, 164–170. doi:10.3997/
1873-0604.2013004.

Kim, H.J., Kim, Y.H., 2011. A unified transformation function for lower and
upper bounding constraints on model parameters in electrical and electro-
magnetic inversion. J. Geophys. Eng. 8, 21–26. doi:10.1088/1742-2132/
8/1/004.

Linde, N., Doetsch, J., 2016. Joint Inversion in Hydrogeophysics and Near-
Surface Geophysics, in: Moorkamp, M., Leliévre, P.G., Linde, N., Khan,
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