|
Geophysical Inversion and Modelling Library v1.5.4
|
#include <polynomial.h>
Public Member Functions | |
| PolynomialFunction (uint size=0) | |
| PolynomialFunction (const Vector< ValueType > &ax) | |
| PolynomialFunction (const Vector< ValueType > &ax, const Vector< ValueType > &ay) | |
| PolynomialFunction (const Vector< ValueType > &ax, const Vector< ValueType > &ay, const Vector< ValueType > &az) | |
| RMatrix & | operator[] (Index k) |
| const RMatrix & | operator[] (Index k) const |
| RMatrix & | matR (Index k) |
| ValueType | operator() (const Pos &xyz) const |
| Vector< ValueType > | operator() (const std::vector< Pos > &xyz) const |
| Index | size () const |
| PolynomialFunction< ValueType > | derive (uint dim) const |
| void | fillElementList () |
| const std::vector< PolynomialElement< ValueType > > & | elements () const |
| void | clear () |
| PolynomialFunction< ValueType > & | fill (const Vector< ValueType > &c) |
| RVector | coeff () const |
Protected Member Functions | |
| void | init_ (const Vector< ValueType > &ax, const Vector< ValueType > &ay, const Vector< ValueType > &az) |
Protected Attributes | |
| std::vector< Matrix< ValueType > > | mat_ |
| std::vector< PolynomialElement< ValueType > > | elementList_ |
Three dimensional polynomial function. For symbolic calculation and derivation. I.e. f(x,y,z) = 1 + x + y + z + xy + xz + zz ...
|
inline |
Create empty polynomial
|
inline |
Create a polynomial 
![$ f(x,y,z) = ax[0] + ax[1]x + ax[2]x^2 ... $](form_13.png)
|
inline |
Create a polynomial function 
![$ f(x,y,z) = ax[0] + ax[1]x + ax[2]x^2 + ... + ay[0] + ay[1]y + ay[2]y^2 + ... $](form_14.png)
|
inline |
Create a polynomial function 
![$ f(x,y,z) = ax[0] + ax[1]x + ax[2]x^2 + ... + ay[0] + ay[1]y + ay[2]y^2 + ... + az[0] + az[1]z + az[2]z^2 + ... $](form_15.png)
|
inline |
Return all coefficients.
|
inline |
Create new polynomial function for 
| dim | = 0 ![]() |
| dim | = 1 ![]() |
| dim | = 2 ![]() |
|
inline |
Fill the parameter coefficients from array. If c.size() == this.size()^3. mat_[k][i][j] = c[k*(size() * size())+ j * size() + i] and return the PolynomialFunction itself. If c.size() is size of elementList_, assume that only the values from elementList_ will be exchanged. Please note, all values of c will be snapped to tolerance.
|
inline |
Return reference to f(x, y, z[k]) polynomial matrix. For python only
|
inline |
Evaluate f(x,y,z)
|
inline |
Evaluate f(x_i,y_i,z_i) for i = [0 .. xyz.size()).
|
inline |
Return f(x, y, z[k]) polynomial matrix
|
inline |
Return f(x, y, z[k]) polynomial matrix
|
inline |
Return the size of this polynomial.
Referenced by GIMLI::operator*().