Fitting SIP signatures#

This example highlights some of the capabilities of pyGimli to analyze spectral induced polarization (SIP) signatures.

Author: Maximilian Weigand, University of Bonn

Import pyGIMLi and related stuff for SIP Spectra

from pygimli.physics.SIP import SIPSpectrum, modelColeColeRho
import numpy as np
import pygimli as pg

1. Generate synthetic data with a Double-Cole-Cole Model and initialize a SIPSpectrum object

f = np.logspace(-2, 5, 100)
Z1 = modelColeColeRho(f, rho=1, m=0.1, tau=0.5, c=0.5)
Z2 = modelColeColeRho(f, rho=1, m=0.25, tau=1e-6, c=1.0)

rho0 = 100 # (Ohm m)
Z = rho0 * (Z1 + Z2)

sip = SIPSpectrum(f=f, amp=np.abs(Z), phi=-np.angle(Z))
# Note the minus sign for the phases: we need to provide -phase[rad]

sip.showData()
sip.showDataKK()  # check Kramers-Kronig relations
  • new
  • new
(<Figure size 640x480 with 2 Axes>, array([<matplotlib.axes._subplots.AxesSubplot object at 0x7fe8a930e400>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x7fe8f56cfa90>],
      dtype=object))
  1. Fit a Cole-Cole model from synthetic data

Z = modelColeColeRho(f, rho=100, m=0.1, tau=0.01, c=0.5)
# TODO data need some noise

sip = SIPSpectrum(f=f, amp=np.abs(Z), phi=-np.angle(Z))
sip.fitColeCole(useCond=False, verbose=False)  # works for both rho and sigma models
sip.showAll()
$\rho$=100.0000 CC: m=0.100 $\tau$=1.0e-02s c=0.50
(<Figure size 1200x1200 with 2 Axes>, array([<matplotlib.axes._subplots.AxesSubplot object at 0x7fe8ab0067f0>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x7fe8aaced220>],
      dtype=object))
  1. Fit a double Cole-Cole model

f = np.logspace(-2, 5, 100)
Z1 = modelColeColeRho(f, rho=1, m=0.1, tau=0.5, c=0.5)
Z2 = modelColeColeRho(f, rho=1, m=0.25, tau=1e-6, c=1.0)

rho0 = 100 #(Ohm m)
Z = rho0 * (Z1 + Z2)

# TODO data need some noise
sip = SIPSpectrum(f=f, amp=np.abs(Z), phi=-np.angle(Z))
sip.fitCCEM(verbose=False) # fit an SIP Cole-Cole term and an EM term (also Cole-Cole)
sip.showAll()
$\rho$=0.0851 CC: m=0.021 $\tau$=1.6e-01s c=0.00
(<Figure size 1200x1200 with 2 Axes>, array([<matplotlib.axes._subplots.AxesSubplot object at 0x7fe8fa6e2790>,
       <matplotlib.axes._subplots.AxesSubplot object at 0x7fe8fa6dfbb0>],
      dtype=object))
  1. Fit a Cole-Cole model to

f = np.logspace(-2, 5, 100)
Z = modelColeColeRho(f, rho=100, m=0.1, tau=0.01, c=0.5)
sip = SIPSpectrum(f=f, amp=np.abs(Z), phi=-np.angle(Z))

sip.showAll()
sip.fitDebyeModel(new=True, showFit=True)
pg.wait()
  • plot 03 fitting sip signatures
  • new
ARMS= 0.0001261341197615591 RRMS= 0.12935406598390997

Note

This tutorial was kindly contributed by Maximilian Weigand (University of Bonn). If you also want to contribute an interesting example, check out our contribution guidelines https://www.pygimli.org/contrib.html.

Gallery generated by Sphinx-Gallery