Note
Click here to download the full example code
Petrophysical joint inversion#
Joint inversion of different geophysical techniques helps to improve both resolution and interpretability of the resulting images. Different data sets can be directly coupled, if there is a link to an underlying target parameter. In this example, ERT and traveltime data are inverted for water saturation. For details see section 3.3 of the pyGIMLi paper (https://cg17.pygimli.org).
import numpy as np
import pygimli as pg
from pygimli import meshtools as mt
from pygimli.physics import ert
from pygimli.physics import traveltime as tt
from pygimli.physics.petro import transFwdArchieS as ArchieTrans
from pygimli.physics.petro import transFwdWyllieS as WyllieTrans
from pygimli.frameworks import (PetroInversionManager,
JointPetroInversionManager)
We start with defining two helper functions.
def createSynthModel():
"""Return the modelling mesh, the porosity distribution and the
parametric mesh for inversion.
"""
# Create the synthetic model
world = mt.createCircle(boundaryMarker=-1, nSegments=64)
tri = mt.createPolygon([[-0.8, -0], [-0.5, -0.7], [0.7, 0.5]],
isClosed=True, area=0.0015)
c1 = mt.createCircle(radius=0.2, pos=[-0.2, 0.5], nSegments=32,
area=0.0025, marker=3)
c2 = mt.createCircle(radius=0.2, pos=[0.32, -0.3], nSegments=32,
area=0.0025, marker=3)
poly = mt.mergePLC([world, tri, c1, c2])
poly.addRegionMarker([0.0, 0, 0], 1, area=0.0015)
poly.addRegionMarker([-0.9, 0, 0], 2, area=0.0015)
c = mt.createCircle(radius=0.99, nSegments=16, start=np.pi, end=np.pi*3)
[poly.createNode(p.pos(), -99) for p in c.nodes()]
mesh = pg.meshtools.createMesh(poly, q=34.4, smooth=[1, 10])
mesh.scale(1.0/5.0)
mesh.rotate([0., 0., 3.1415/3])
mesh.rotate([0., 0., 3.1415])
petro = pg.solver.parseArgToArray([[1, 0.9], [2, 0.6], [3, 0.3]],
mesh.cellCount(), mesh)
# Create the parametric mesh that only reflect the domain geometry
world = mt.createCircle(boundaryMarker=-1, nSegments=32, area=0.0051)
paraMesh = pg.meshtools.createMesh(world, q=34.0, smooth=[1, 10])
paraMesh.scale(1.0/5.0)
return mesh, paraMesh, petro
def showModel(ax, model, mesh, petro=1, cMin=None, cMax=None, label=None,
cMap=None, showMesh=False):
"""Utility function to show and save models for the CG paper."""
if cMin is None:
cMin = 0.3
if cMax is None:
cMax = 0.9
if cMap is None:
cMap = 'viridis'
if petro:
ax, _ = pg.show(mesh, model, label=label,
logScale=False, cMin=cMin, cMax=cMax, cMap=cMap, ax=ax)
else:
ax, _ = pg.show(mesh, model, label=label,
logScale=True, cMin=cMin, cMax=cMax, cMap=cMap, ax=ax)
ticks = [-.2, -.1, 0, .1, .2]
ax.xaxis.set_ticks(ticks)
ax.yaxis.set_ticks(ticks)
pg.viewer.mpl.drawSensors(ax, ertData.sensorPositions(), diam=0.005)
# despine(ax=ax, offset=5, trim=True)
if showMesh:
pg.viewer.mpl.drawSelectedMeshBoundaries(ax, mesh.boundaries(),
linewidth=0.3, color="0.2")
return ax
Create synthetic model#
mMesh, pMesh, saturation = createSynthModel()
Create Petrophysical models
ertTrans = ArchieTrans(rFluid=20, phi=0.3)
res = ertTrans(saturation)
ttTrans = WyllieTrans(vm=4000, phi=0.3)
vel = 1./ttTrans(saturation)
sensors = mMesh.positions()[mMesh.findNodesIdxByMarker(-99)]
Forward simulation#
To create synthetic data sets, we assume 16 equally-spaced sensors on the circumferential boundary of the mesh. For the ERT modelling we build a complete dipole-dipole array. For the ultrasonic tomography we simulate the travel time for every possible sensor pair.
pg.info("Simulate ERT")
ertScheme = ert.createERTData(sensors, schemeName='dd', closed=1)
ertData = ert.simulate(mMesh, scheme=ertScheme, res=res, noiseLevel=0.01)
pg.info("Simulate Traveltime")
ttScheme = tt.createRAData(sensors)
ttData = tt.simulate(mMesh, scheme=ttScheme, vel=vel,
noiseLevel=0.01, noiseAbs=4e-6)
Data error estimate (min:max) 0.010000190585099936 : 0.01001232215607078
Conventional inversion#
pg.info("ERT Inversion")
ERT = ert.ERTManager(verbose=False, sr=False)
resInv = ERT.invert(ertData, mesh=pMesh, zWeight=1, lam=20, verbose=False)
ERT.inv.echoStatus()
pg.info("Traveltime Inversion")
TT = tt.TravelTimeManager(verbose=False)
velInv = TT.invert(ttData, mesh=pMesh, lam=100, useGradient=0, zWeight=1.0)
TT.inv.echoStatus()
Petrophysical inversion (individually)#
pg.info("ERT Petrogeophysical Inversion")
ERTPetro = PetroInversionManager(petro=ertTrans, mgr=ERT)
satERT = ERTPetro.invert(ertData, mesh=pMesh, limits=[0., 1.], lam=10,
verbose=False)
ERTPetro.inv.echoStatus()
pg.info("TT Petrogeophysical Inversion")
TTPetro = PetroInversionManager(petro=ttTrans, mgr=TT)
satTT = TTPetro.invert(ttData, mesh=pMesh, limits=[0., 1.], lam=5)
TTPetro.inv.echoStatus()
Petrophysical joint inversion#
pg.info("Petrophysical Joint-Inversion TT-ERT")
JointPetro = JointPetroInversionManager(petros=[ertTrans, ttTrans],
mgrs=[ERT, TT])
satJoint = JointPetro.invert([ertData, ttData], mesh=pMesh,
limits=[0., 1.], lam=5, verbose=False)
JointPetro.inv.echoStatus()
Visualization#
ERT.showData(ertData)
TT.showData(ttData)
axs = [None]*8
showModel(axs[0], saturation, mMesh, showMesh=True,
label=r'Saturation (${\tt petro}$)')
showModel(axs[1], res, mMesh, petro=0, cMin=250, cMax=2500, showMesh=1,
label=pg.unit('res'), cMap=pg.cmap('res'))
showModel(axs[5], vel, mMesh, petro=0, cMin=1000, cMax=2500, showMesh=1,
label=pg.unit('vel'), cMap=pg.cmap('vel'))
showModel(axs[2], resInv, pMesh, 0, cMin=250, cMax=2500,
label=pg.unit('res'), cMap=pg.cmap('res'))
showModel(axs[6], velInv, pMesh, 0, cMin=1000, cMax=2500,
label=pg.unit('vel'), cMap=pg.cmap('vel'))
showModel(axs[3], satERT, pMesh,
label=r'Saturation (${\tt satERT}$)')
showModel(axs[7], satTT, pMesh,
label=r'Saturation (${\tt satTT}$)')
showModel(axs[4], satJoint, pMesh,
label=r'Saturation (${\tt satJoint}$)')
Detecting small distances, using mm accuracy
<matplotlib.axes._subplots.AxesSubplot object at 0x7fe8ab1cb3a0>
Total running time of the script: ( 0 minutes 15.023 seconds)